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DISPLACEMENT EFFECT OF THE LAMINAR BOUNDARY
LAYFR AND THE PRESSURE DRAG*

By H. Gortler
1. INTRODUCTION

The following considerations refer to two-dimensional, not neces-
sarily steady laminar movements of an infinitely extended fluid without
free surfaces, for very small friction, about a bodyl immersed in this
fluid; they deal with the mutual influence between the boundary layer
developing in the proximity of the body and the outer flow which is
practically free from friction.

We denote by X and Y the coordinates of a Cartesian right-hand
system of the plane filxed with respect to the body, by x and y the
customary boundary layer coordinates defined in a zone near the wall
(that is, an orthogonal right-hand system where x signifies the
wall-arc length measured from a fixed contour point, y the wall distance
measured positively from the wall toward the fluid).

Furthermore, R(x) is assumed to be the radius of curvature of
the wall which we define in the manner that has become customary for
boundary layer investigations, in contrast to the usual mathematical
definition, as positive for walls which are convex with respect to

the fluid.? Finally, u and v are assumed to be the velocity
components of the boundary-layer flow, U -and V -the corresponding
components of the potential flow about the body in x or Yy direction,
U and V the velocity components of the potential flow in X or Y
direction.

*"erdringungswirkung der laminaren Grenzschichten und
Druckwiderstand." Ingenieur-Archiv, vol. 1k, 194k, pp. 286-305.

IThe contour of the cylinder cross section in the flow plane
should, if no other requirements are made explicitly, be of continuous
curvature and fre« of multiple point singularities; it may go to infinity.

°In order to have in the defined range of X, y a reversible
one-to-one relation between X, Y and x, ¥y, the requirement must
be made that there R + y # O. This does not impose any further
limitation, however, since according to presupposition in the boundary
layer region | /R|<< 1. '
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If the well-known boundary layer omlssions are permissible, the
general hydrodynamic equations of motion are reduced to the following
boundary-layer equations:

L 5
_all.+:u§ll.+va_u=-~-]:--a—p+ oTu (1.1a)
ot . ox oy P ox ByE

Su, .o, (1.1p)
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where t signifies the time, p the constant density, and v the
constant kinematic viscosity of the fluid. Furthermore, p = p(x,t)

is the pressure impressed on the boundary layer by the outer flow.
Insofar as the outer flow noticeably deviates from the regular potential
flow about the body, p(x,t) must be determined on the basis of special
considerations or be taken from pressure measurements, In the present
report, we consider only cases where the potential-theoretical pressure
distribution in first approximation is sufficient for the boundary-layer
calculation according to equations (l.1). In this boundary-layer theory
approximation, the potential velocity prevailing at the "outer edge" of
the boundary layer 1is replaced by the potential flow prevailing about
the body itself, thus by U(x,0,t), and the pressure term in

equation (1. la) is calculated from Euler's equation of motion with
U(x,0,t) = Uy(x,t) as

1% _% o, o (1.2)
P dx ot 0 3x

The boundary condition required in addition to the adherence conditions
u=v=0 at thewall y =0 1is that U assume asymptotically for
increasing yy Re the value3 TUgp(x,t). (Re is the Reynolds number

formed with a characteristic length and a characteristic velocity.)

. The described ommissions, correct in the limit for indefinitely
increasing Reynolds numbers, are only an approximation for the large
but still finite Re-values for which laminar flow 1s plainly still
possible. Particularly the connectlon between the boundary-layer flow
thus calculated and the outer potential flow, assumed to be undisturbed,

3The imaginary line, denoted above, In the customary manner of
expression, as the "outer edge" of the boundary layer, runs at the
distance from the wall y = 8(x,t)("boundary-layer thickness") at
which u practically attains the value Uo(x,t) for the accuracy

requirements in each case,
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does not satisfy continuity. Thus the question arises: What actual
course does the outer, practically frictionless flow which is modified
by the boundery layer take? This problem and the related one regarding
the calculation of the pressure drag will be -discussed below.... The
considerations willl be applied to an example in all details,

2, DISPLACEMENT EFFECT OF THE BOUNDARY LAYER ON THE OUTER FLOW

We assume a body which, from a state of rest, is set in motion
relative to the surrounding fluid., 1In this case, the boundary layer
gradually developing from the start of the movement will be very thin
at first, so that for sufficlently small times of movement the regular

. potential flow about the body itself, as outer flow, may be taken as a

basis for the boundary layer calculation in good approximstion, The
well-known investigation concerning the origin of the boundary layers

(H. Blasiusu), and later extensions?s© are based on this assumption.
However, with increasing times t the boundary layer increases, for a
finite Reynolds number, up to a noticeable thickness; in general, it
will influence the outer flow by mass displacement away from the wall

to a corresponding extent. For a corresponding improvement of the
customary boundary-layer theory approximation sketched in section 1,

one must therefore consider the mutual Influence of the increasing
boundary layer and the outer-flow., It suggests itself to attain such
an improvement in first approximation by using at first the displacement
effect on the basis of the original boundary-layer calculation, and
hence determining a correspondingly corrected course of the outer flow.
In a second step one would then have to calculate the boundary-layer
flow anew, taking the above new outer flow as a basis. However, it will
generally not be possible to carry out this improved boundary-layer
calculation, using the new outer pressure distribution, according to the
0ld scheme (equations (1.1) with the boundary conditions formulated
there in the text), since the curvature effects, so far neglected in

the boundary-layer equations, generally contribute amounts which can no
longer be neglected within the scope of such an improved boundary-layer.
calculation., We shall return to this later on (section L4).

%Blasius, H.: Grenzschichten in Flussigkeiten mit kleiner Reibung
(The Boundary layers in Fluids with Little Friction). Dissertation
GSttingen, Zeitschrift flir Mathematik und Physik 56, 1908, p. 1.
(Available as NACA TM 1256.,) '

5Boltze,_E.: Grenzschichten an Rotationskorpern in Fliissigkeiten
mit kleiner Reibung. (Boundary Layers on Bodies of Revolution in Fluids
with Little Friction). Diss., GSttingen, 1908.

6goldstein, S., and Rosenhead, L.: Proc. Cambridge Phil. Soc. 32,
1936, p. 392. : '




4 - I | NACA T 1315

The improved flow calculation aspired to 1s of decisive importance
for the numerical determination of the pressure dragY. This becomes
particularly obvious, if one visualizes a body of finite dimension
" transferred from a state of rest into a state of rectilinear-uniform
movement relatlive to the surrounding fluid of infinite extension. For
this terminal state the potential-theoretical pressure distribution, so
far, in first approximation, taken as a basis for the boundary-layer
calculation, does not yleld any pressure drag (d'Alembert's paradox).
Thus, small as the changes in pressure gradient at the body caused here
by the boundary layer may be relative to the potentlal-theoretical
pressure gradient, they alone constitute the pressure drag.

We want to emphasize here once more that, as we discussed before
in the introduction, we do not Include in our considerations flows
where, for instance, by pronounced separation of the boundary layer,
the outer frictionless flow is considerably transformed compared to the
potential flow about the body. Of course, precisely such processes are
of foremost importance for the originating pressure drag in many flow
problems. Such processes cannot be included within the scope of the
following considerations which are based on the boundary-layer theo-
retical approximation. However, we should like to refer here to a
related report by M. Schwabe8 where the pressure distribution after
completed boundary-layer separation is determined according to an
emplrical formulation for the example of the circular cylinder set into
rectilinear-uniform motion from a state of rest. The space taken up by
the pair of vortices developing on the back of the cylinder after the
separation is determined by observation and then simulated by calculation
by superposition of a sultable time-dependent source-sink flow on the
ordinary potential flow about the cylinder. Ohe then obtains outside
of this space a streamline pattern which corresponds well to actual
conditions, and a pressure drag caused by the nonsteady acceleration
fields.

Furthermore, we want to point out that J. Pretsch? developed an
approximative method for theoretical determination of the pressure drag

Tpressure drag" = the component in direction of the movement of
the resultant pressure force on theé entire body surface, also called
(less correctly) "form drag". Pressure drag + friction drag = total
drag (presupposing non-existence of free surfaces).

BSchwabe, M.: Uber Druckermittlung in der nichtstationdren ebenen
Stromung (On the Determination of Pressure in a Nonsteady Two-Dimensional
Flow). Diss. Gottingen. Ing.-Archiv 6, 1935, p. 3k4.

9Pretsch, J.: Zur theoretischen Berechnung des Profilwiderstandes
(Concerning Theoretical Calculation of the Profile Drag). Diss. Gottingen,
Jahrbuch 1938 der deutschen Luftfahrtforschung, p. I 60. (Available as

NACA TM 1009.)
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) of profiles in a steady flow by taking the displacement effect of the
|- boundary layer into account. In a procedure similar to ours he pre-
{= supposes that no separation of the boundary layer, or only a slight one,
e o “takes place; In the steady case this- signifies, however, a limitation
: to slender profiles at a small angle of attack so that here the total
? profile drag is due in the greatest part to surface friction. Our
{; consideration, related in the basic idea, refers at the outset to non-
1 steady flows as well and aims chiefly at the problem of the drag origin
g in movements of cylindrical bodies of arbitrary profile from a state of
¥ " rest for small times after the start of motion, naturally without being
limited to these movements, Also, it follows a different method.
Whereas Pretsch makes the additional assumption that the friction losses
in the wake behind the body may be neglected, probably satisfied in
L good approximation in view of his presupposition quoted above ("Bodies
£ of Small Drag'"), and then is able to determine, within this scope, the
pressure drag from momentum consideratlons in a simple and general
manner without actually having to calculate the corrected outer potential
flow 1n every single case, we abstain from this or a similar simplifying
assumption because we set ourselves a problem of a different type.

|
|
%
} In the following considerations we shall first deal with the first
e \f step of problem formulation, namely, the correction of the outer poten-
| ,MQ tial flow by consideration of the displacement effect (resulting from
55/3A the boundary-layer flow calculated in first approximation), and shall
‘K\? discuss a few questions arising in case of nonsteady conditions. After
{ ,5that the second step which leads to the calculation of the pressure drag
waill be treated in general and carried out numerically on an example,
SV -
\@ {\
N o s
ﬁ \(,JW{L' 3. CORRECTION OF THE OUTER POTENTIAL FLOW
b i Vv -

-
)

First, one has to find an appropriate measure for the displacement
effect of the boundary layer on the outer flow., For that purpose the
well-known boundary-layer theoretical length presents itself which is
called "displacement thickness" and denoted by &%,

The formulation of the boundary condition for wu(x,y,t) for
indefinitely increasing y‘Vﬁg was based on the conception that the
potential theoretical velocity distribution for the large (though still
finite) values of the Reynolds numbers of interest may be regarded
practically as constant in first approximation for the very small thick-
ness of the boundary layer and may, therefore, be put equal to U(x,0,t)..
The definition of the displacement thickness ©®* is likewise based on
the conception of this streamline approximation [ﬁ(x,y,t) = Uo(x,t) '

and thus for reasons of continuity V(x,y,t) = -yBUO/Bi].

}I}'x
)_m
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The quantity &% 1s explained as follows: The fluid volume transQ
ported at a fixed point x at a fixed time t between the wall y = 0O
and the outer edge ¥y =_6(x,t) of the boundary layer in unit time

3
equals u/g u dy. The potential flow about the body would transport, if

the streamline approximation described above were taken for a basis, the
volume Ub(x,t)& through the same cross-section in unit time. The

difference between these two quantities, that is, the loss in rate of
flow per unit time caused by the viscosity effect, leads by virtue of

o)
- = *
Ub& L/g u dy UbS
to the definition of the length &%

5% (x,t) = ﬁ%l/pa(uo- u) dy. (3.1)
0

[@ompare figure 1; the hatched areas are equal. Of course, any other
length y = y; > % may be selected instead of the upper limit & of

the integral in equation (3.1), as long as the velocity U(x,y,t)
in 0 £y Sy is replaced by Uo(x,t);] According to definition,

o* 1is, therefore, a measure of the displacement of the streamlines of
the outer potential flow away from the body on the basis of the reduction
(caused by the friction layer near the body) in the quantity of fluid
flowing by the point x at the time +t. (Therein a streamline in its
identity for all times 1s prescribed by the fact that it, together with
the wall y = 0, 1includes a stream tube of temporally constant through
flow.) : ,

In order to obtain, instead of the potential flow about the pre-
scribed body, a corrected outer potential flow which takes the dis-
placement effect of the boundary layer into account, we visualize the
following model flow: Outside of a line y = 6*(x,t) a potential flow
with y = &% as streamline is assumed to flow. Within 0 Sy < &
one assumes water at rest relative to the body. In this model flow the
same quantity of fluid is to flow past the body per unit time as in the
viscous flor, Equation (3.1) then indicates the value of &*(x,t) in
first approximation for sufficiently high Re values.
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As to the line ¥y = 8* which is to he a streamline of our substitute
flow, it must be taken into consideration that for the general nonsteady
case the course of this line varies with time. The line y = % +then
is a movable dividing line between potential flow and water at rest.

In contrast to the dynamic dividing lines, it therefore consists in
general not permanently of the same fluid particles, but represents,

for reasons of continuity, a permeable line. In mathematical formulation
the boundary condition to be stipulated expresses that the normal
component of the potential-flow velocity along the dividing line

Yy = 6*(x,t) should vanish every moment. Then y = o% 1is a streamline,

A simple example which we shall investigate more thoroughly later
(section 5) will serve to clear up these conditions. We assume that a
circular cylinder of the radius R 1is set at the time t =0, from a
state of rest, relative to the surrounding infinitely extended fluid,
into a rectilinear and uniformly accelerated motion perpendicular to
its axis. The frictionless flow relative to the body is then given by
the velocity potential

-+ %)
¢O = bt\r + - cos 9

where r and Jd signify polar coordinates in the flow plane, referred
to the center of the circle, r =R +y, 9 =7 - x/R, and b denotes
a constant acceleration. This potential flow ylelds the pressure

variatlon on r = R required for the usual boundary-layer calculation.

For very small times (small compared to the time +t = tA of the start

of separation) this calculation results in a displacement thickness

o¥ increasing proportionally to VVEl For these very small times after
the start of the motion the potential of our improved outer flow
therefore reads

r

R+ c gg)é' k
¢l=th+ ok cos 9 (t >0, r >R + cy/vt,

% = c4/vt, ¢ = const.)

i
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The line y = c:Jvt is a streamline. While it fravels out into the
fluid starting from t = O, the streamline pattern of the entire outer
flow correspondingly varies continuouslylO,

In order to clarify the conception we shall add a few remarks

- regarding the mass displacement of the boundary layers, The streamline
displacement thickness &% does by no means always represent at the

same time a measure for the mass displacement., This becomes immediately
clear from the following simple example., An unlimited plane wall which
up to the time t = 0 1is at rest relative to the surrounding infinitely
extended fluid 1s assumed to be moved in itself, according to an arbitrary
acceleration law, starting from t = 0. A certain velocity profile
(which is known to be easily defined) develops, and one obtains a dis-
placement thickness 0% different from zero. However, a mass displace-
ment away from the wall does not take place due to v = O [@ = u(y,tﬂ .
We could have made clear the difference in the two displacement phenomena
in a perfectly analogous manner on the case of the circular cylinder

set rotating about its axis from a state of rest; thus we should have
spared ourselves the fiction of an infinitely extended body. Here, just
as in the above limiting case of the plane wall, a boundary layer
develops; a mass dlsplacement away from the cylinder in radial direction,
however, cannot take place due to reasons of continuity and symmetry,

If one relinquishes this symmetry by selecting for instance instead of
the circular cylinder a cylinder slightly wavy in comparison, the mass
displacement normal to the contour will be, in general, different from
zero; however, the length ©%* does not present a measure for it.

lOWe shall glve here for comparison the velocity potential 8 of

the corresponding flow about an expanding impermeable circular cylinder.
If its contour is prescribed by r = R(t), one has

. 7
- R (t)] &R(t) .. T
¢ = btlf‘ + ———r——- cos 4§ + R(t) T In ﬁ

The additively appearing source yields that additional fluid in the
outer space r = R(t) which the impermeable circular cylinder itself
displaces while expanding
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Looking for a measure for the mass displacement, one may start from
the relation following from equation (3.1) by differentiatlon with respect
to X and consideration of the continuity equation

(an*) = v(x,5,t) + 8 <2 a (x,t) (3.2)

(Again any y =¥y >% may be Substituted for ®). The right side
indicates the excess of the v-velocity at the edge of the boundary
layer compared to the V-velocity - SBUO/BX of the corresponding

frictionless flow prevailing there. Thus the entire volume displaced

by friction effect between two points X and X, per unit time is

at any rate always prescribed by
X3
f (v - V)dx = Ejosﬂ - [an*:l
Xo X=Xl X=

We now visualize, as in the definition of 8%, a model flow. We assume
a frictionless potential flow, with the quantity ©, generally different

from 0%, +to be prevailing for ¥y 2 6*(x,t); the length ©, is assumed
to be fixed so that precisely the fluid which actually 1s displaced by
the friction effect would flow through O s y s B, with the

=

velocity Ug. Inslde O Yy s 0, Wwe assume for our model flow water

at rest relative to the body. Then there follows from equation (3.2)
) . 0

Hence there results by integration for the "mass displacement

thickness" &, the statement

Uo(a* - &%) = £(t), (3.4)
that is, this difference is only dependent on t.

Hence one can reccognize: If one were to proceed in the determination
of the first correction of the outer potential flow described above,
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and therewith of the pressure field correction for large Re-values,
in such a manner that one would make not y = &% but y = 6* for all

times the streamline of the substitute flow, the result would remain
unchanged, according to equation (3.4). Both models dlffer at any
moment only in the numbering of the streamlines.,

As to the relation between &% and ©5,, one may state: If one

assumes that at the respective time t the stream tube which includes

at the point x the reglon O s Yy s v with vy Z ® followed up

upstream finally blends completely in a region where the flow is
frictionless (case of approach flow), &% = ®,. If, however, this

presupposition is not fulfilled, as for instance in the examples with
vanishing o, selected above, the conclusion drawn above 1s not valid,
either, In every flow of this type the streamtube just considered is
either bounded by the wall in its entire course upstream, or it leaves
the wall In stretches as when a separation of the boundary layer material
from the Lody with subsequent readherence takes placell upstream

(case of longitudinal flow.) The value of 8, at the time t can be

given for all x 1if one 1s able to give, in addition to the varlation
of 8*(x,t), known according to equation (3.1), the value of &, at a

single point x = x0;12 for equation (3.4) then yields only the

difference statement
us. I = [uexf¥
0% 0 x
%0 0

llIt is always presupposed that the flow iIn the x-~interval of
interest of the body contour and outside of the boundary layer next to
the body is frictionless. Thus for instance the case where the body
gets into its own wake during the motion is left out of consideration.

127t must be noted, though, that cases exist where it is impossible
on principle to give such a value., Let us visuallize for instance the
boundary-layer flow originating when an unlimited wall, deviating from
a mean plane by surface waviness, is moved in 1ts mean plane out of a
state of rest. If no special condltions prevail, the expression for the
total volume displaced at the time t wup to a point x in unit time

' U,
| XE(x’yl’t) + 7 Exg (x,t)|ax

will not even be unique.
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Therewith we shall close this little digression concerning mass

displacement.. Following we shall make use only of the streamline
displacement thickness 6* :

4. CALCULATION OF THE PRESSURE DRAG IN FIRST APPROXIMATION

With the Improvement in the calculatlon of the outer potential flow
a more accurate specification of the pressure distribution in the outer
frictionless flow becomes possible, However, we must warn here against
the following fallacy: In general, one cannot use the resulting pressure
distribution at the edge of the boundary layer as Ilmpressed
pressure p(x,t) for an improved boundary-layer calculation according
to the equations (1.1) and (1.2), for the obtalned correction of the
outer pressure gradilent is, in'general, of the same order of magnitude
as the terms which have been neglected in the equations of motion. To
obtain an improved boundary-layer calculation it would thus be necessary

to take corresponding further terms into consideration in the equations
of*motion as well.

The general Navier—Stokes equations of motion and the continuity
equation read in our curvilinear coordinates x,y 1in full strictness

EN

ow, R ,Ow,, %,  w _ _1_R d ,ou
ot R +y Ox 9y R+ y PR + y ox C?y
1 du R2 3%y

.|,.. -
R+ydy (R+y)°dx2

2 + 2R §l - > (4.1a)
R+9° ®+y)°
R A&

v o+
(R + y)3 dx

Ry dR ou
R+ y)3 dx dx |

-

13Compare, for instance: Tollmien, W.: Grenzschichttheorile
(Boundary-Layer Theory). Handbuch der Experimentalphysik (Manual of
Experimental Physics) Vol. 4, Part I, p. 248, Leipzig 1931.
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>, R_ . _d 1ap+_v[2a2v:'éa du

(4.2a)
v + i R oy o+
®+ 9% @®+y) ax
Ry daR ov
——— = —,
R + y)° ax ox
R @4. a_v+ v = 0. (11_:33,)

R+yox Oy R+7Y

Therein R(x) denotes the radius of curvature of the wall contour y = 0
(contrary to the mathematical definition positive on walls convex with
respect to the flow).

If one considers in these equations, on the basis of the customary
estimates founded on the physical picture, only the terms of highest
order for very large Reynolds numbers Re = UL/y (U 1is a characteristic
velocity, L a characteristic length), one arrives, in the known
manner, at the boundary-layer equations (1,1)14, If one considers in
improved approximation also the terms of the order 0(3/L) compared
with 0(1), there results

2
_ai+u.a_u+v§}_l+la_p_va_u.=zua_u_}£ _y_§£ iéE, ().]..1)
ot ox oy p ox oy R ox R PR ox R Jy

19 2
£ - =, (4.2)

l)"'Compare, for instance, W. Tollmien, footnote 13.
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Su, oV _you_v (4.3)
ox oy Rox R
On the left side are-the terms from equation (1.1), on the right the
newly added terms.

The correction of the outer pressure we obtained above is, in
general, of this same order O(S/L) Thus, if one wants to perform wlth
this improved outer flow an improved boundary-layer calculation {(second
approximation for large Re), one can in general no longer neglect the
right sides and can, therefore, no longer calculate with a
pressure p = p(x,t) impressed on the boundary layer. (Compare addi-
4ional remark at the end of this section.)

For calculation of the pressure drag in first approximation for
large Re, the problem that interests us here, the solution is simpler,
We now know, according to the expositions of section 3, the outer pressure
field, far remote from the body, sufficiently accurately; it only remains
for us to continue this pressure field up to the body surface by deter-
mining the pressure gradient in y-direction through the boundary layer.
Equation (L4.2) serves this purpose: It yields OJp/dy sufficiently
accurately for this approximation, if we substitute in it on the right
side u from the first boundary-layer approximation.

If y = 8(x,t) denotes the "outer edge" of the boundary layer,
and plx,d(x,t) ﬁ] is the pressure dlstrlbutiog of the improved outer

potential flow along this line, one has for O $% in this
approximation
p 5 2
p(x,5,t) = p(x,8,t) - =~ [ u" ay. (4.4)
R(x) J

The pressure drag of the unit length of the cylinder in the flow becomes

Wp = JF p(x,0,t) cos @ dax 1
K

=L/;{_E3(x:5:t) -ﬁ%fs Edy cos @ d'x}%

7

(4.5)
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Wherein @ signifies the angle between surface normal and main flow
direction, and the integral is_to be formed over the entire contour K
of the cylinder cross section.

10pdditional remark at the time of proof correction: Regarding
the problem of an improved calculation of the boundary layer flow
(second approximation for moderately large Reynolds numbers), not
followed up further in the present report, the following calculation
procedure seems to me to be promlsing:

1. Calculation of the boundary layer in the customary first
approximation for very large Re.

2, Hence correction of the outer frictionless flow according to
Ziff's method.

3. Improved calculation of the pressure field p(x,y,t) in the
boundary-layer zone according to equation (4.k4).

4, Again calculation of the velocity components u and v of the
. boundary layer in second approximation from equations (4.1) and (4.3),
using th» pressure field calculated above and replacing the right sides
of equations (4.1) and (4.3) by the known expressions of first approxi-
mation so that the newly added terms of the order 0(8/R) compared with
1 appear in the calculation as prescribed functions.
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5. EXAMPLEL6

Following we shall consider as an example a nonsteady flow which
originates if a body 1s, from a state of rest, set into a rectiiinear
motion relative to the surrounding infinitely extended fluid, onward
from t = 0. The relative velocity of the undisturbed approach flow
with respect to the body visualized as being at rest is assumed to

16I'he simplest, almost trilvial example on which the method developed
may be tested is the case of the plane steady stagnation point flow.
Here the strict solution of the Navier-~Stokes equations is known, and
the flow near the wall calculated on the basis of the boundary-layer
theory is known to agree with the exact solution. If one replaces the
potential-theoretical stagnation point flow at the wall by the stag-
nation point flow at the wall shifted by 6*(=.const.), one obtains
as the corrected outer flow for y >0 also full agreement with the
exact solution. Since the outer pressure gradient parallel to the wall
has remained unchanged in this correction and the wall 1s plane, an
Improvement of the boundary-layer calculation proves to be impossible
as it has to be. Thus the exact solution has already been attained with
this one step.

A further example with plane body boundaries (for which the
boundary-layer equations (1.1l) therefore are valid except for terms of
the order 0(62/R2) compared with 1) is the case of longitudinal flow
over a plate. According to Blasius, elsewhere, &% = 1.73 sz}Um
(U, free stream velocity, x distance from the leading edge of the
plate). With the improved outer pressure distribution calculated as
suggested above, there results as the superimposed pressure for an
improved boundary calculation

2 -1
p(x) = p—Z—QE. + 1.35 Re(xﬂ

(Re(x) = Upx/V). One does obtain here a considerable pressure correc-
tion since the. new outer flow has a stagnation point, but one recognlzes
that the pressure correction has already dropped at Re(x) = 75 to

1 percent of the stagnation pressure. However, in the proximity of the
leading edge of the plate (small Re(x) - values) Blasius' boundary '
layer equation cannot be used. An improved calculation of the flow
which . in this range does not use the boundary layer approximations is
sti1l lacking. Thus for the time being the method of improvement for
larger Re(x) suggested in this report cannot be utilized for this
example. ’ : :
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be T =Cyt"(C, = const., nZ0, tZ0. Then the potential
velocity Uo(x,t) along the body boundaries can be represented in the

form
Up (x,t) = | (5.1)

We assume V(x,y,t) to be the stream function of the boundary-layer

flow defined by u = OV¥/dy, v = - OY/dx which is obtained when the
pressure gradient to be calculated from equation (5.1) according to
equation (1.2) is taken as a basis, on the strength of the boundary-
layer equations (l.l), thus in the customary first approximation for

very large Re-values. Generalizing the series developments set up

by Blasius*! for the special cases n = O (sudden transition from state
of rest to motion at constant velocity) and n = 1 (uniform acceleration)
one obtains the result

Vooust) = 2AVE[att, o () + @t () ] (5:2)

thus a seriles development in powers of tn+l (that is, in powers of

the distance covered by the body). The appearing coefficient functions
4 O(n), € l('r]), ... with 7 = y/24/vt are universal functions of 1.
n n,

2
More detalls may be found iIn the appendix to this report.

From equation (5.2) follows

n ont+l
u = t s + "t ' + eee
q En,o aq n,1 ’
- > (5.3)
- ' I’l( !2 n % N+
v = ENIVtEt Jn,o+(q + aq") Ca, 1 * oee
S

17Com.pare footnote 4 on page 3.
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The boundary condltions are satisfied by virtue of

N O
. | |

g;,o(o) = ;,1(0) = sse =0, $ (5.4)
6 of=) = 1, 6,1 () = one = o,J

vhere there is always, here and later on

g1 d ¢

n,k dn n,x

For the streamline displacement thickness &% there results

ox(x, ) = 2 k[, - 2" (D, () - o (5.5)

with

a = lim E] - Qn’o(nil. (5.6)

13

(A few numerical values a, are given in the appendix.)

ﬁ ' We consider as an example the flow about a zircular cylinder. In
ﬂ the mode of notation of section 3, the velocity potential of the
ﬂ frictionless flow about the circular cylinder is given by '

| ' '

_ 2
¢y = U(t)(r + %FJ cos ¥ (5-7)

MR N T O a
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Hence the velocity at the periphery of the cylinder is calculeted as

Uy (x,t) = a(x)th = 20(t) sin 3, | (5.8)

and the resulting pressure distribution at the body surface is

po(x,t) = pg - p[QR(cos 9+ 1) %—E+ 252(1:) sinea] s (5.9)

where pd(t) is the pressure at the forward stagnation point. The

potential-theoretical pressure drag of the length L of the cylinder
at rest is therefore

2x U
W == Lu/\ Pg cos § Rdg = 2pﬁR2L a . (5.10)
Do 0 dt

Thus one obtains, as is known, an increase in inertia by double the
amount of the inert mass of the fluld displaced by the cylinder itself.
For the improved calculation of the outer potential flow there results

8%(x,t) = 2 4b£'§? + 2 gQ-Q (0)t8L cos 5 + ‘-Z]. (5.11)
R ™m,l

Following we limlt ourselves to small times t for which the two first
terms of the serles development represent a sufficient approximation.
In this approximation the line y = ®*(x,t) practically represents a
circle; that is to say, a circle with increasing radius r, the center

of which, for +t>0, does not coincide with that of the cylinder cross-
section, but travels slowly downstream. The equation of such a circle
reads formally

L
— sin2 6)2
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(a = radius, b = displacement of the center), and if b <<.a

We identify
.
a(t) = R + 2ap AWE,
e o L (5.12)
_ 4NVE n+l

—’

If, temporarily, T,J, denote polar coordinates about the center
of this circle in motion relative to the cylinder, the potential flow -
appertaining to the latter, the streamline of which is the line
r =R + 5%, that is, r = a(t), is given by the potential

thus the potential flow here required in the polar coordinate system 1,9
fixed relative to the body by

2
— a
21 = Ul + — 5 (r cosd - 1) (5.13)
. .- -2br cosd + b . .

At first we introduce dimensionless quantities as follows: We

choose R as the characteristic length, and the time T the body requires
to cover the distance R, starting from the beginning of motion t = O,
as the characteristic time, thus
. :——1 :

D+l
T = (n + l) i‘J : (5.14)

Co
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Hence results the characteristic velocity

1
n n+I

B _ (COR )

T n+l

and the Reynolds number Re formed with this velocity and the length
R becomesl8

Re{@3=35 (5.15)

By making dimensionless the variable lengths x, y, ry, a, b by
dividing by R, the time t by dividing by T, the velocity TU(t)
by dividing by R/T, the potential by dividing by R2/T, and the
pressure by dividing by pRE/T2 (we denote.the dimensionless quantities
by adding a wavy line), we obtain

Lol
¥ =1+ 20q Re 22,
> .12a
) E (5.12a)
b=U4n+1) (x) Re“t 3
n,
——
~ ~ 32 ~ ~ o
T = - (n+ 1)t2(1 + = —2. —> (¥ cos X + b).
1 ¥+ 25 % cos X+ 5 (5.13a)

lSIf one forms the Reynolds number Re, with the length AfvT

1
one obtalns

1
Rep = (R/T)ﬁ/v = Re?
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Furthermore,
. _ ~ 1 1
n=. ?;_.= %Reztm§
2 db
and
1 .
&2
o* _ ¢ - . o+l ~
= = |2, 4(n + l)gn’l(w)t cos %]. | (5.11&)
ReE

We consider first the case n =1 of uniform acceleration from a
state of rest. Following, P; without more precise data will represent

those additive portions of the pressure 51 = pl/(pRe/Te) which do not

make any contributions to the pressure and are therefore not of interest
to us, Furthermore, terms of the order O0(82/R2) compared with 1 are
neglected, One obtains for the pressure calculation according to the
Bernoulli equation at the distance from the wall § = /R

ot R

- L éfl)z =0 EE\
2\g¢% 2)

&, —%%) 52
- — = (l + 3aIRe t cos X + P1 + O<—§>

Thus one obtalns

11 N 5
'131(3‘:, 2 ‘E) = 4(1 + 3a1Re'E'E’£) cos ¥ + 16 & t2s1n% + P, + 0(1-35).

(5.16)
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According to equation (4.4)

3% 0,0 -%(% 81 -/ “Req. (k. ke)
0

In the small times of interest to us there is

=14 % sin zgi o(q) - 16 ¥3sin ¥ cos %' (n),

J

therefore
5/R 5/R
_f oy = - 16 t3sineif ¢} 0263‘ +
0 0 )
/R
128 t*s1n®X cos ik/ﬁ Lttt ay =)
0 1,0 1, 1
256 "E'6sin2~ cos x\/ﬁ ¢! 2@?.
. “(5.17)
Because of 1lim ; (n) =1, 1im g (n) = 0 the two last integrals

on the right are, if S/R is chosen so large that these asymptotic
values are attained with the deslrable accuracy, numbers Independent of
the variation of the boundary-layer edge 6(x t) with X. The first
integral at the right, together with the corresponding second term at
the right in equation (5. 16), may also be combined into an expression
independent of &(X,%), namely the expression

'1325v,1n21’\('L/ﬁm (l - éi Og)dy.
0 o
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Thus the variation of &(%,%) over X does not play any role in
Judging what terms make contributions to the pressure drag which is as
it shou.ld be. If one :f‘inally inserts

1
2an,

l\)ll—‘

¥ = 2Re <%

all together one obtains, therefore,

11\
(%X, 0, %) = lF(l + 3ajRe eze)tos X

V] \Xo)

l P
[ .
+ 256 8in®¥ cos ¥ Re = & L §l,0 Cl,ld'“ + Py + O(Re™).

(5.18)

Thus the following pressure drag of a circuler cylinder of the length L

for small times after start of the motion and in first order for large
Re-values results

W 1 1

— = _ 1+ ¥Re (3a. + 16 ¥ f £ n). (5.19a)
20 D o 1 0 l 01, l

2p1tR2LCO = wDO is the potential-theoretical pressure drag. (Compare

equation (5.10).) According to Blasius'calculations 307 = 2/5’7?(:1.128),

furthermore, according to the author's numerical evaluation

»/; 1011 = 0.0980k
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-Thus the result in dimensional form is

_ AVE( 2 Co ok '
Wy = wDo 1 + A W+ 0.392 " )L - (5.19)

As friction drag

21{8
= DVk/n u(x, 0, t) sin ﬁ-dx

theré results from Blasius' calculation resultsl?

2
_ . A2 Co .4
Wg = Wp, 2 (,__n 0029Re > (5.20)

For sufficiently small times +t(f << 1) ~thus Wy = W, - Wy , that
o

is, the friction drag increases immediately after start of the motion
according to the same law as the contribution of the skin friction to
the pressure drag. :

The total drag becomes

W= g+ - wDO 1+ -"%E f;__+ 0,363 —% 1. (5.21)

In figure 2 we represented these results using the dimensionless

=t/T (with T = A\/.?.R/CO for the present case n = 1), thus the
relations

: 1

w T o

‘-‘_7132 =1+ %1 ¥2(1.128 + 1.569 T4, (5.19,)
o

1911 order to obtain the term with tu, one must here include in
equation (5.2) also the third term of the series. The necessary data
may be found in Blasius’ report, footnote k.
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L |
;_R - _”IRL_T. $2(1.128 - 0.116t%), _ (5.20,)
Do
. - 1 ' '

%_ -1+ “}I:’T ¥3(2.257 + 1.453tH), - (5.21,)
o

Our formulas can be appllied with good approximation only for very small
times after start of the motion (solidly drawn parts of the curves),
because we had, for the sake of simplicity, taken into consideration
only a few terms of the developement (5.2); but of course, with a 1little
calculation expenditure they can be easily improved, at least so far

that they are valid up to times shortly after setting-in of the separation.

The value t© = %‘A( = A 0.586 ) = 0.766 plotted in figure 2 indicates
the time of the start of separation, in first approximation, at the
rearward stagnation point according to Blasius. (Compare also appendix.)

For an arbitrary integral n > O one obtains correspondingly as
pressure drag with T(t) = Cyt® and WDy = 2pRAL dU/dt

2 00 '
W Ty
D _ vt 1 0 . 2nt2 ' 1 (5.22)
W-ﬁo— =1 + -—R (2 + n)an + ———nR2 t 0 gn,og n,ldﬂ

For the calculation of the coefficient of t2t2 gufficlent numerical
data concerning ;A l('q) are lacking so far. For this reason we limit
2

ourgselves in our numerical statements to the first term of the develop-
1

ment with time (term with t2) and put the question whether the law

Wg = Wp - WDO obtained sbove for n = 1, for times lmmediately after

start of the motion, is valld also for arbiltrary n > Q. The friction
drag has for these small times the value

AN () -
Wy = v ST 20— (5.23)
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In the appendix the exact expressions for ¢ O(n) are derived.

However, the relation

0o, 2n (n!)?
2(2n + l)ag = ;n,o(o) = 28 EZn)! ;%% (5.2k)

is valid; we produce a very simple proof for it in the appendix (one
may confirm it also with the aid of the tables of the appendix we
calculated for n = 1, 2, 3, and 4). Thus, for very small times after
start of the motion, there applies indeed

¥R = Wp - Wp, ]
viz:
3 NVt on ni(n - 1)!
= Wp, g 2 o)t J% (n>0). (5.25)

(One has 22™n!(n - 1)!/(2n)! Vit = 1.1284 for n = 1; 0.7522 for n = 2;
0.6018 for n = 3; 0.5158 for n = 4, etc.)

One may now consider more general laws of motion of the form

A

0 for t =0

U(x) =

1V

f(t) for t = 0(£f(0) = 0)

and carry out corresponding calculations. If one presupposes that the
function f£(t) defined in t 20 can be developed into a Taylor series

around t = 0 which converges for the small times O é:t <K.pA after

start of the motion which are of interest to us, one may attain the
result quite analogously with a series expression correspondingly
generalized compared to equation (5.2). One can interpret the

law U = Cotn which has been valid so far as the first term of the
development with time of such a general law of motion. Hence it follows
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that for all these laws of motion the portion of the pressure drag
caused by friction WD - wDo Increases immediately after the start of

motion according to the same law (5.25) as the friction drag. This is
a noteworthy gquality of the circular cylinder.

One may also include the case of a sudden start of motion in these
considerations; it is true that one must then accept, corresponding to
this degeneration of the form of motion at the time +t = 0, infinite "
pressures and drags at the time t = 0. With T =Cy = const. for ¢t 20

one obtains

s |
.w=2mRLc‘JE _th rog! .26
D p ONT + R2 o QO OCO l (5 )
and
2
o 5(0) 5 5,0 T ]
_ 0,0 0,2a 0 .2
W = 2p7RLC ;\ft‘ — + — 3 t_J (5.27)
The function O 2a(n) is explained at the end of the appendix. We

did not numerically determine the coefficients at £2  in equations (5.26)
- L ¢ - -
and (5.27). Because of QG =5 EO’O(O)(_ 1/4, = 0.5642) the law stated

above WR = WD - WD is valid also in this limiting case n = 0 of
0

the sudden start of motion, for times immediately after the start of
motion, Here in particular WDO =0 (d'Alembert's paradox).
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APPENDIX
A FEW CALCULATIONS REGARDING THE DEVELOPMENT OF THE BOUNDARY LAYERS

A few calculations will be given in this appendix which yield,
among other data, those required for the preceding investigation
(section 5) concerning the basic functions {, 1(n) of the unsteady
boundary layers; for the rest, they represent ﬁerely an extension of
the related calculations by Blasius. We give these calculations apart
from the previous conslderations, first, because they would have
disrupted the connection there, and second, because the datw and tables
attained are of Interest in their own right.

As assumed in section 5, let a velocity proportional to tn(n.Z o) °
be imparted to a body from a state of rest relative to the surrounding
indefinitely extended fluid, beginning at t = 0. The potential-
theoretical circumferential velocity U(x,0,t) = Ug(x,t) then has the
form (5.1). For calculation of the boundary layer development from
t = 0, if a generalization is made of the series set up by Blasius
for n=0 and n =1, the expression

W%mﬂ=2fﬁ%;tm“mng»(mm
with (1)

n = y/2 NvE

for the stream function V of the boundary-layer flow 1s obtained and
one obtains for the functions X, , by substituting equation (1)
2

into the boundary layer differential equation (1.1) a system of
differential equations solved by recursion; we limit ourselves here to
the two first equations of this system which read

33 % X g

n,0 n,0 n,0

—-—+21]—T—l+n = - lng(x),
a3 an
33« 32x ax ax_ - 3%
T 7T SNSRI . S SRS Bt TN ¥ ()

n’ n° n 3 oxon

9%,,0 a2xn,o
Bx 61]2 -

qaqa' /.




NACA T™™ 1315 29

We assume first n (later 2n) to be an integer. Then the.solutions

may be represented with the aid of Hermite polynomials. With the
statements

X
1

q(x)gn o(n),

g ®

x
It

n,l Q(X)Q'(x)cn,l(ﬂ)

one obtains from equation (2) the ordinary differential equatilons

gltl + 21];'1
n n

0 ‘0 hngn’o in, (4)

r 2
e gy - b e 0= (e - b o- ). )

The boundary conditions to be satisfied by Cn o and §n | are
> >
formulated in equation (5.4)

%5‘::::‘_,41—* 6 -

S T




30 ' - NACA TM 1315

In the case of a plane wall moving in_its own plane,

¥ = 2 ¥yt qtngn O('q) represents the complete solution (because
’

of gq = const.), not only in the boundary-layer theory approximation
set up here, but in strict fulfillment of the complete Navier-Stokes

equations.ao The calculation of §n o may take place as follows. The

. 2
temporary splitting-off

] l -T]2 ( ) 6
6 o) =1 - (6)
transforms equation (%) into

Py - 219, - 2(2n + 1), = O (7)

DBecause of U, = Uo(t), u = u(y,t) and v = 0, the Navier-
Stokes equations are for these motlons simplified to

The analogy between UO - u and the corresponding solutions of the

problem of heat conduction has been known for a long time; 1t offered
one of the few possibilities of attaining exact solutions of the
Navier-Stokes equations, For the rest, one can see for the present
problem that the first term qtgﬂ 0 of the series development

J

following from equation (1) for u as a solution of the above equation
approximately satisfies the boundary-layer equation in the sense that
only the terms of highest order are taken into consideration for small
times after start of the motion, whereas the quadratic inertia terms
are neglected, The iterative improvement of thls first approximation
for small times then ylelds step by step the ascending terms of the
series we set up formally at the outset. This consideration led
Blasius, (elsevhere), at the time to his special series formulations
for n=0 and n = 1.
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For every integral 2n 20 the general solution of this differential

equation21 is

@t (@ @

(Ci, C, are integration constants), As is well known, the Hermite

polynomials H_ (x) are given by

) = (g f o - S (BB et o
<K<

(in the form originally given by Hermite). For further use we also put

Hm(ix) = imﬁ;(X), thus

ﬁm(X) - e (%)mex2 = > (21)-(2%_)-"(&)&2”, (10)
0<k<H '
furthermore
> [* 2 avg .
R T 0 x) = 1% (11)

2lgompare, for instance, E. Kamke "Differentialgleichungen:
Losungsmethoden und Losungen, I Gewohnliche Differentialgleichungen"
(Differential equations: Methods of solutions and solutions, TI.
ordinary differentlal ecuations) Leipzig 1942, Part C, No. 2,41, and
put there x =1 Jz_n. '
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(so that in particular l + ¢O =90 represents the error integral, o4

the error function). By using these expressions, a simple recalculation
from equation (8) glves the general solution of equation (4) as

Cg,o(n) =1 - Hgn(n)[§l + CZ@O(n{] +
(12)
(mE__;(n)

n-K

2n
cpe () 2 (3)(- U,

K

_ A
with C,* = AZ¢C

C, = 0 Dbecause of §' () =1 and Co* = -n!/(2n)! because
of gg O(o) =0 and Hgn(o) (2n)!/n:, [?he polynomial sum in
2

equation (12) disappears for 7 = O and integral n term by term,
since either 2n -« or &k - 1 1is an odd numbeﬁ]. Thus the desired

particular integral of (4)22 reads

2n
o) =1+ (225![%én(n)°o(n) - ®7(n) ;;;‘(%f>(- 1 oy (B, _1(n) |.

(13)

1)“’1

Because of @K(q) = (- @l(n)HK_l(n) the solution may also be

written in the following form which is more elegant than equation (13)
but less serviceable for practical calculation

o) = 1 +—£li— (&1) . | (132)

22‘I‘he direct and elementary derivation of the solution for
integral n 2’0,_ and therewith for integral 2n 2’0, compare below,
falls to work if n does not have this property. But in that case,
too, the solutions are easily found if one makes use of the analogy to
the corresponding solutions of linear heat conduction (compare
footnote 20 to this report) and represents the solution according to
the singularity method.



&

- 5;')','0'(") -1 +.0,(n).= (),
ﬁioh)=1+(h2+lﬁ(m4ﬁ@(m,
o) = 1+ 2 [ (it + 1202 + 300 (n) + (202 + S)ng (n):[
é,o(") =1 f f% [?nG + ébn + 9002 & 15)¢ )+ o _' }
(bt 2672 + 33>n¢l<nﬂ |
Q)l,o(n) =1+ T(%E&q8+ 22U 6 + 8UOn ¥ + 8hon2 + 105) 35 (n) +
(81° + 208" + 37002 + 279)n0(n)] .
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According to equation (13) one has in particular

-/

(13p)

Thence one obtains by elementary guadratures §n O(n), likewise

2
expressed by @O and Ql with polynomial coefficlents, The numerical
evaluation is reproduced in table 193, Because of the special impor-
tance of the solutions (n) as boundary-layer profiles u/qt®

in the case of the plane wall (compare above) we represented them in

figure 3. [Owing to 8% = 2«] t Tllim (n - (n)) 2an4/ t the stream-
line displacement thickness 8°  can easily 6e taken from the numerical
cal table 1; compare-.also table 2.]

Bince it follows directly from equation (7), by single differ-
entiation, that the general integral o 1 is the first derivative of

-

the general Integral @, with respect to 1, 1t is, with the
boundary conditlons satisfied, easy to find as expressions for the basic

functions ¢ 1o (n) with the integral n

n+550

' =1 - t" 1.t 1. 1k
' (o)Ln:O + 2n )] (ax)

n-!-E,O

23.All numerical calculations were performed by Miss Ursula Ludewig.
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- Therein

e (o) =22 (B2 o - (15)

n,0 (en)! afx

In order to calculate the fundamental functions of the first order
n l(n), the total course of E (n) must be known (according to

equatlon (5)). Only the addltional knowledge of Q"-l(o) is required
n,

for the problem which 1is of foremost interest, the question regarding
location and time of a possible separation of the boundary layer in
first approximation, '

For because of

<Bu>y_o 2‘]—[ (0) + qq'tn+l§£’l(0) + o :l

one obtains in first approximation the connection

1
—n+1L

- 65,00 6
q'(x)¢ . l(0) : :

for location x and time t of the separation. On the other hand,
we are interested in ¢ 1(oo) (compare section 5), with a view to the
n

2
calculation of the displacement thickness. These two data can be
determined without solution of the differential equation (5) by a
well-known method as follows: 9(n) 1s assumed to be a function of 1q
in O i;n < provided with the continuity properties required for the
following calculatlon, By partial integration one obtains the following
relations, If Ln and Mn are the differential operators

2
L, = 115 + 27 4 _ i(on + 1),
dn dn
2
_ a 4 3
Mn = 2 - 27 T - h(En + 2),




NACA T™ 1315

one has

Lmﬁ(n)LnEI;:ﬂqﬁ =.Eé;,1“"'§1'1,' 2’11’C ] fC 1Mn[19]dﬂ;
R R 3

JF ¢ a1 dn Mﬁ]}]dﬁ.

We choose, therefore, 9 = 9 0(1]) . Bo that’:
n’ . -

MnESn,O] =0

with

3 (0)y=-1, 3 () =0
n,0 n,0

If then equation (5) and the boundary conditions valid for
are taken into consideration the result is

£;:1<0) =~/; an,O(n)u’@r'x,Oe = gn,o‘;;,o - ]>dq,

On the other hand we choose ¥ =439, (n) so that
. 3 > .

Mﬂ[ﬂn,w =
with

an’m(O) =0, "n;,uo( w) finite

35

(17)

- (18)

(17a)

(17p)

(18e)
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'Then one obtains, in analogy

(=) = -% (n)h(g 3 n0§; o - J.)aﬁ.- - (18v)

It is easily confirmed that

-1
ﬁn’w(ﬂ) = mﬁn’o("]-) + {l’ (19)

‘furthermore by comparison with equation (7)

2.
80 = €T [ty ) o) - 1], (20)
Therewith the desired functilons ﬂn 0 and ﬁn are traced back to
2 y ®

the known basic functions of zero order §2n+l,0-

Numerical evaluation yielded for n =0, 1, 2, 3, and 4 all
together the data here of interest given in table 2. It alsc shows the
numerical values of ap. For the n-values 1, 2, 3, and 4 one finds
the law (5.24) confirmed. A general proof of this law may be produced
with a few calculations on the basis of the known expressions
for Cn,O(n)' A much simpler proof of the relation (5.24) will be

presented below. As mentioned above, the expression

u = qtncljl,o (Tl)

1s the strict solution for the boundary-layer profile on a plane wall
with U = qt® (q = const.) outside of the boundary layer. The wall

shearing stress according to the momentum theorem of the boundary
layers is generally

. [pdy_i 'apuEdy-—fa %N gy .5 2, (21)
o= Y5 o Ox 0 3t ox
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thus for the above flow, due  to the wvelocity distribution u(n,t) being

independent of x as well as due to ég = = P Su and with

ox 3%
= ol:" - o(")]

L1

o o2 | Y- way - 2(uor) = paen + Va7 €75 (22)
- On the_othe? hand
To = H i‘i(gT’tl = qu'r'l’.O(O) -—g—v o %: (23__)
and thus in combination with equation (15), as asserted,
2(2n + 1ay = & 5(0) = ?—z—;i%/—); . (5.24)

In the case of the flow about a circular cylinder moved rectilinearly
out of a state of rest, investigated in section 5 [compare equation (5. 8)]

one has gq(x) = 205 sin x/R and therefore -q "(X)pax = 2o
for x/R = . Thus the separation starts according to equation (16)
at the rearward stagnation point at the time

1

" " o+l
ty = E n,o(o)/ecogn,l(o)]

(compare table 3). The distance covered by the cylinder during that
time is

5y = Cot,2(n + 1) = RE" (0)/2(+ 1LY (©)
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Finally we want to give a few indications where to find further
data regarding the basic fmctions of the plane nonsteady boundary-layer
flow. The series development (5.2) written down up to the third term
reads S

+ t2(n+l)(q12gn,2a + qq”gn,gb) + ...].

. n n+l ¢
¥ = 2 afvt qt En,0+t an,l
Blasius gives, in addition to the functions ¢, o(n) and gl o(1])
2 J
calculated above, the rigorous solutions §O l(n) and §l l(n).
J

2
Beyond that, he calculates the numerical values ¢! , (0) and ¢! ., (0)
) 1,28 1,2b

which are of interest for the determination of the separation.
S. Goldstein and L. Rosenhead?l give the exact expressions for §0,2a(n)

and QO,Eb(n)’ These integrals were, by the way, numerically determined

before by Boltze25 on the occasion of treatment of the corresponding
problem n = 0 of rotationally symmetrical flows which seems to have
escaped the attention of the authors. ' .

Translated by Mary L. Mahler
National Advisory Committee
for Aeronautics

EFCompare footnote 6 of this report.

5
2fCompare footnote 5 of this report.
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 TABIE 2
n o tn 00) | tu1(=) | th-1(0)
0 0.5642 1.1284 - 0.418 1.607
1 0.3761 2.2568 - 0.138 0.963
2 0.3009 3,0090 0.072 . 0.756
3 0.2579 3.6108 0.046 0.632
L 0.2293 4,1266 | 0.033 | 0.552
TABLE 3

START OF SEPARATION tp AND DISTANCE TRAVELIED S, 1IN THE
CASE OF A CIRCULAR CYLINDER MOVED RECTILINEARLY

OUT OF A STATE OF REST

‘ 1
n+l
n t {C—Q} ?é
A R R
0 0.351 0.351
1 1,082 0.586
2 1.258 0.663
3 1.300 . 0.T1h
in 1.302 0.748
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Figure 1.- Regarding definition of s&*.
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Figure 2.~ Pressure drag Wp, frictiondrag Wpg, and total drag
W = Wpy + WR of the circular cylinder for very small times after start

of the motion for uniform acceleration out of a state of rest.
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Figure 3.- Course of the functions Enoln) for n=0,1,2,38,and4.
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